Mathematics

MOORE-PENROSE INVERSE OF BIDIAGONAL MATRICES. IV

Yu. R. HAKOPIAN ${ }^{1}$ * S. S. ALEKSANYAN ${ }^{2 * *}$
${ }^{1}$ Chair of Numerical Analysis and Mathematical Modeling YSU, Armenia
${ }^{2}$ Chair of Mathematics and Mathematical Modeling RAU, Armenia

The present work completes a research started in the papers [1--3]. Based on the results obtained in the previous papers, here we give a definitive solution to the problem of the Moore-Penrose inversion of singular upper bidiagonal matrices.

MSC2010: Primary 15A09. Secondary 65F20.
Keywords: generalized inverse, Moore-Penrose inverse, bidiagonal matrix.
Introduction. We consider a problem of the Moore-Penrose inversion of singular upper bidiagonal matrices

$$
A=\left[\begin{array}{ccccc}
d_{1} & b_{1} & & & \tag{1}\\
& d_{2} & b_{2} & 0 & \\
& & \ddots & \ddots & \\
& 0 & & d_{n-1} & b_{n-1} \\
& & & & d_{n}
\end{array}\right]
$$

under the assumption $b_{1}, b_{2}, \ldots, b_{n-1} \neq 0$ (note that this assumption does not restrict the generality of the problem, since if some of over-diagonal entries of the matrix A are zero, then the original problem is decomposed into several similar problems for bidiagonal matrices of lower order). In [1] we obtained a solution to the problem in a special case, where $d_{1}, d_{2}, \ldots, d_{n-1} \neq 0, d_{n}=0$.

To solve the problem for any arrangement of one or more zeros on the main diagonal of the matrix A, in [2,3] we carried out some preliminary constructions and calculations. At first, we represented the matrix (1) in the block form

$$
A=\left[\begin{array}{ccccc}
A_{1} & B_{1} & & & \tag{2}\\
& A_{2} & B_{2} & & \\
& & \ddots & \ddots & \\
& & & A_{m-1} & B_{m-1} \\
& & & & A_{m}
\end{array}\right]
$$

[^0]${ }^{* *}$ E-mail: alexosarm@gmail.com
with diagonal blocks $A_{k}, k=1,2, \ldots, m$, of the size $n_{k} \times n_{k}$ and over-diagonal blocks $B_{k}, k=1,2, \ldots, m-1$, of the size $n_{k} \times n_{k+1}$, where $n_{1}+n_{2}+\cdots+n_{m}=n$. The structure of the blocks was specified in the Introduction of [2]; ibid the types 1, 2 and 3 of the blocks A_{k} have been identified. Note that by virtue of the partitioning rule, only the last block A_{m} in (2) can be a block of type 3. The blocks B_{k} are given in (5) of [2].

As has been shown in [2] (see A Way of Computing the Moore-Penrose Invertion), the matrix A^{+}has the following block form:

$$
A^{+}=\left[\begin{array}{ccccc}
Z_{1} & & & & \tag{3}\\
H_{2} & Z_{2} & & 0 & \\
& \ddots & \ddots & & \\
& 0 & H_{m-1} & Z_{m-1} & \\
& & & H_{m} & Z_{m}
\end{array}\right]
$$

the blocks Z_{k} and H_{k} are computed by the formulae

$$
\begin{align*}
Z_{k} & =\lim _{\varepsilon \rightarrow+0} L_{k}(\varepsilon)^{-1} A_{k}^{T}, \quad k=1,2, \ldots, m \tag{4}\\
H_{k} & =\lim _{\varepsilon \rightarrow+0} L_{k}(\varepsilon)^{-1} B_{k-1}^{T}, \quad k=2,3, \ldots, m \tag{5}
\end{align*}
$$

where

$$
\begin{gather*}
L_{1}(\varepsilon)=A_{1}^{T} A_{1}+\varepsilon I_{1} \tag{6}\\
L_{k}(\varepsilon)=A_{k}^{T} A_{k}+B_{k-1}^{T} B_{k-1}+\varepsilon I_{k}, \quad k=2,3, \ldots, m \tag{7}
\end{gather*}
$$

and I_{k} stands for the identity matrix of the order n_{k}.
For the purpose of simplifying the record of subsequent formulae, let us write the block $A_{k}, 1 \leq k \leq m$, in the form

$$
A_{k}=\left[\begin{array}{ccccc}
d_{1}^{(k)} & b_{1}^{(k)} & & & \tag{8}\\
& d_{2}^{(k)} & b_{2}^{(k)} & 0 & \\
& & \ddots & \ddots & \\
& 0 & & d_{n_{k}-1}^{(k)} & b_{n_{k}-1}^{(k)} \\
& & & & d_{n_{k}}^{(k)}
\end{array}\right]
$$

where, according to (1),

$$
\begin{array}{ll}
d_{i}^{(k)}=d_{n_{1}+\cdots+n_{k-1}+i}, & i=1,2, \ldots, n_{k} \tag{9}\\
b_{i}^{(k)}=b_{n_{1}+\cdots+n_{k-1}+i}, & i=1,2, \ldots, n_{k}-1
\end{array}
$$

We introduce the following notation:

$$
\begin{equation*}
r_{s}^{(k)}=\frac{b_{s}^{(k)}}{d_{s}^{(k)}}, s=1,2, \ldots, n_{k}-1 ; r_{0}^{(k)}=r_{n_{k}}^{(k)}=1 \tag{10}
\end{equation*}
$$

Further, let

$$
\begin{equation*}
\Delta_{k}=b_{n_{1}+n_{2}+\cdots+n_{k}}, k=1,2, \ldots, m-1 \tag{11}
\end{equation*}
$$

(see (5) in [2]).
Based on the results obtained in the previous articles [1--3], below we give a closed form expressions for the entries of the matrix A^{+}as well as a numerical algorithm for their computation.

Computation of the Blocks Z_{k}. Let us start with the block Z_{1}. The problem of computing this block was discussed in [2] (see Block Z_{1}). If the corresponding block A_{1} is of type 1 , then the entries of the block $Z_{1}=A_{1}^{+}$are computed using the formulae (50)-(52) from [1]. If A_{1} is a block of type 2 , then $Z_{1}=[0]_{1 \times 1}$ for $n_{1}=1$; for $n_{1} \geq 2$ the block Z_{1} is the lower bidiagonal matrix given in (17) of [2].

Note that if $m=1$ (see the block representation (3) of the matrix A), then obviously $A^{+}=Z_{1}$.

Let us discuss the blocks $Z_{k}, 2 \leq k \leq m$. If A_{k} is a block of type 1 , the formulae for the entries of the block Z_{k} are actually obtained in Lemma 3 of [3] (replacing n with n_{k} and taking into account notation (9),(10)). If A_{k} is a block of type 2 , the entries of the block Z_{k} are derived in Lemma 5 of [3] (replacing n with n_{k} and using notation (9)). As has been said above, only the last block A_{m} in (2) can be a block of type 3. In this case the entries of the block Z_{m} are computed by the formulae derived in Lemma 1 of [3] (replacing n with n_{m}, Δ with Δ_{m-1} and taking into account notation (9),(10)).

Thus, we arrive at to the following statement.
Theorem 1. Let a singular upper bidiagonal matrix A from (1) with nonzero over-diagonal entries is represented in the block form (2), according to the rule described in Introduction of [2]. Then the entries of diagonal blocks $Z_{k}=\left[z_{i j}^{(k)}\right]_{n_{k} \times n_{k}}$, $1 \leq k \leq m$, in the block representation (3) of the matrix A^{+}are computed as follows.
I. The entries of the block Z_{1} :

1) if A_{1} is a block of type 1 , then

1a) for the indeces $j=1,2, \ldots, n_{1}-1$ and $i=1,2, \ldots, j$:

$$
z_{i j}^{(1)}=\frac{(-1)^{i+j} \sum_{k=1}^{n_{1}-j}\left(\prod_{s=j}^{n_{1}-k} \frac{1}{r_{s}^{(1)}}\right)\left(\prod_{s=n_{1}-k+1}^{n_{1}-1} r_{s}^{(1)}\right)}{\prod_{s=1}^{i-1} r_{s}^{(1)} \cdot d_{j}^{(1)} \sum_{k=1}^{n_{1}}\left(\prod_{s=1}^{n_{1}-k} \frac{1}{r_{s}^{(1)}}\right)\left(\prod_{s=n_{1}-k+1}^{n_{1}-1} r_{s}^{(1)}\right)}
$$

1b) for the indeces $j=1,2, \ldots, n_{1}-1$ and $i=j+1, j+2, \ldots, n_{1}$:

$$
z_{i j}^{(1)}=\frac{(-1)^{i+j+1}\left(\prod_{s=i}^{n_{1}-1} r_{s}^{(1)}\right) \cdot \sum_{k=1}^{j}\left(\prod_{s=1}^{k-1} \frac{1}{r_{s}^{(1)}}\right)\left(\prod_{s=k}^{j-1} r_{s}^{(1)}\right)}{d_{j}^{(1)} \sum_{k=1}^{n_{1}}\left(\prod_{s=1}^{n_{1}-k} \frac{1}{r_{s}^{(1)}}\right)\left(\prod_{s=n_{1}-k+1}^{n_{1}-1} r_{s}^{(1)}\right)} ;
$$

1c) for the index $j=n_{1}$:

$$
z_{i n_{1}}^{(1)}=0, \quad i=1,2, \ldots, n_{1}
$$

2) if A_{1} is a block of type 2 , then
for $n_{1}=1$:

$$
Z_{1}=[0]_{1 \times 1}
$$

for $n_{1} \geq 2$:

$$
z_{i i-1}^{(1)}=\frac{1}{b_{i-1}^{(1)}}, \quad i=2,3, \ldots, n_{1}
$$

$$
z_{i j}^{(1)}=0 \quad \text { in the remaining cases. }
$$

II. The entries of the blocks $Z_{k}, 2 \leq k \leq m$:

3) if A_{k} is a block of type 1 , then
3a) for the indeces $j=1,2, \ldots, n_{k}$ and $i=1,2, \ldots, j$:

$$
z_{i j}^{(k)}=0
$$

3b) for the indeces $j=1,2, \ldots, n_{k}-1$ and $i=j+1, j+2, \ldots, n_{k}$:

$$
z_{i j}^{(k)}=\frac{(-1)^{i+j+1}}{d_{j}^{(k)}} \prod_{s=j}^{i-1} \frac{1}{r_{s}^{(k)}}
$$

4) if A_{k} is a block of type 2 , then
for $n_{k}=1$:

$$
Z_{k}=[0]_{1 \times 1}
$$

for $n_{k} \geq 2$:

$$
\begin{aligned}
& z_{i i-1}^{(k)}=\frac{1}{b_{i-1}^{(k)}}, \quad i=2,3, \ldots, n_{k} \\
& z_{i j}^{(k)}=0 \quad \text { in the remaining cases; }
\end{aligned}
$$

5) if A_{m} is a block of type 3 and $n_{m}=1$, then

$$
Z_{m}=\left[\frac{d_{1}^{(m)}}{d_{1}^{(m)^{2}}+\Delta_{m-1}^{2}}\right]_{1 \times 1}
$$

6) if A_{m} is a block of type 3 and $n_{m} \geq 2$, then

6a) for the indeces $j=1,2, \ldots, n_{m}$ and $i=1,2, \ldots, j$:

$$
z_{i j}^{(m)}=\frac{(-1)^{i+j}\left[\prod_{s=1}^{i-1} \frac{1}{r_{s}^{(m)}}+\Delta_{m-1}^{2} \sum_{k=1}^{i-1} \frac{1}{b_{k}^{(m)^{2}}}\left(\prod_{s=1}^{k} r_{s}^{(m)}\right)\left(\prod_{s=k+1}^{i-1} \frac{1}{r_{s}^{(m)}}\right)\right] \kappa_{j}^{(m)}}{d_{n_{m}}^{(m)^{2}}\left[\prod_{s=1}^{n_{m}-1} \frac{1}{r_{s}^{(m)}}+\Delta_{m-1}^{2} \sum_{k=1}^{n_{m}-1} \frac{1}{b_{k}^{(m)^{2}}}\left(\prod_{s=1}^{k} r_{s}^{(m)}\right)\left(\prod_{s=k+1}^{n_{m}-1} \frac{1}{r_{s}^{(m)}}\right)\right]+D^{(m)}},
$$

where

$$
\kappa_{j}^{(m)} \equiv \frac{d_{n_{m}}^{(m)^{2}}}{d_{j}^{(m)}} \prod_{s=j}^{n_{m}-1} \frac{1}{r_{s}^{(m)}}, \quad D^{(m)} \equiv \Delta_{m-1}^{2} \prod_{s=1}^{n_{m}-1} r_{s}^{(m)}
$$

6b) for the indeces $j=1,2, \ldots, n_{m}-1$ and $i=j+1, j+2, \ldots, n_{m}$:

$$
z_{i j}^{(m)}=\frac{(-1)^{i+j+1}\left[\prod_{s=i}^{n_{m}-1} r_{s}^{(m)}+d_{n_{m}}^{(m)^{2}} \sum_{k=i}^{n_{m}-1} \frac{1}{d_{k}^{(m)^{2}}}\left(\prod_{s=i}^{k-1} r_{s}^{(m)}\right)\left(\prod_{s=k}^{n_{m}-1} \frac{1}{r_{s}^{(m)}}\right)\right] \omega_{j}^{(m)}}{d_{n_{m}}^{(m)^{2}}\left[\prod_{s=1}^{n_{m}-1} \frac{1}{r_{s}^{(m)}}+\Delta_{m-1}^{2} \sum_{k=1}^{n_{m}-1} \frac{1}{b_{k}^{(m)^{2}}}\left(\prod_{s=1}^{k} r_{s}^{(m)}\right)\left(\prod_{s=k+1}^{n_{m}-1} \frac{1}{r_{s}^{(m)}}\right)\right]+D^{(m)}},
$$

where

$$
\omega_{j}^{(m)} \equiv \frac{\Delta_{m-1}^{2}}{d_{j}^{(m)}} \prod_{s=1}^{j-1} r_{s}^{(m)}, \quad D^{(m)} \equiv \Delta_{m-1}^{2} \prod_{s=1}^{n_{m}-1} r_{s}^{(m)}
$$

Thus, we have got the formulae to compute the entries of the blocks Z_{k}.

Computation of the Blocks H_{k}. Proceed to the blocks $H_{k}, 2 \leq k \leq m$, in the block representation (3) of the matrix A^{+}. If A_{k} is a block of type 1 , the entries of the corresponding block H_{k} are computed by the formulae derived in Lemma 4 of [3] (naturally, replacing n with n_{k}, l with n_{k-1}, Δ with Δ_{k-1} and taking into account notation (9),(10)). Further, if A_{k} is a block of type 2, the entries of the block H_{k} are computed according to Lemma 6 from [3] (replacing Δ with Δ_{k-1}). Finally, if A_{m} is a block of type 3 , the entries of the block H_{m} are computed by the formulae derived in Lemma 2 of [3] (replacing n with n_{m}, l with n_{m-1}, Δ with Δ_{m-1} and taking into account notation (9),(10)).

As a result we get the following statement:
Theorem 2. Let a singular upper bidiagonal matrix A from (1) with nonzero over-diagonal entries is represented in the block form (2), according to the rule described in Introduction of [2]. Then the entries of under-diagonal blocks $H_{k}=\left[h_{i j}^{(k)}\right]_{n_{k} \times n_{k-1}}, 2 \leq k \leq m$, in the block representation (3) of the matrix A^{+}are computed as follows:

1) if A_{k} is a block of type 1 , then

$$
\begin{aligned}
& h_{i n_{k-1}}^{(k)}=\frac{(-1)^{i+1}}{\Delta_{k-1}} \prod_{s=1}^{i-1} \frac{1}{r_{s}^{(k)}}, \quad i=1,2, \ldots, n_{k}, \\
& h_{i j}^{(k)}=0 \quad \text { in the remaining cases }
\end{aligned}
$$

2) if A_{k} is a block of type 2 , then

$$
\begin{aligned}
& h_{1 n_{k-1}}^{(k)}=\frac{1}{\Delta_{k-1}}, \\
& h_{i j}^{(k)}=0 \quad \text { in the remaining cases; }
\end{aligned}
$$

3) if A_{m} is a block of type 3 and $n_{m}=1$, then

$$
h_{1 n_{m-1}}^{(m)}=\frac{\Delta_{m-1}}{d_{1}^{(m)^{2}}+\Delta_{m-1}^{2}} ; h_{1 j}=0, j=1,2, \ldots, n_{m-1}-1 ;
$$

4) if A_{m} is a block of type 3 and $n_{m} \geq 2$, then

4a) for the indeces $j=1,2, \ldots, n_{m-1}-1$ and $i=1,2, \ldots, n_{m}$:

$$
h_{i j}^{(m)}=0 ;
$$

4b) for the indeces $j=n_{m}$ and $i=1,2, \ldots, n_{m}$:

$$
h_{i n_{m-1}}^{(m)}=\frac{(-1)^{i+1} \Delta_{m-1}\left[\prod_{s=i}^{n_{m}-1} r_{s}^{(m)}+d_{n m}^{(m)^{(m)}} \sum_{k=i}^{n_{m}-1} \frac{1}{d_{k}^{(m)^{2}}}\left(\prod_{s=i}^{k-1} r_{s}^{(m)}\right)\left(\prod_{s=k}^{n_{m}-1} \frac{1}{r_{s}^{(m)}}\right)\right]}{d_{n_{m}(m)^{2}}^{\left(n_{m}-1\right.}\left[\prod_{s=1}^{n_{1}} \frac{1}{r_{s}^{(m)}}+\Delta_{m-1}^{2} \sum_{k=1}^{n_{m}-1} \frac{1}{b_{k}^{(m)^{2}}}\left(\prod_{s=1}^{k} r_{s}^{(m)}\right)\left(\prod_{s=k+1}^{n_{m}-1} \frac{1}{r_{s}^{(m)}}\right)\right]+D^{(m)}},
$$

where $D^{(m)} \equiv \Delta_{m-1}^{2} \prod_{s=1}^{n_{m}-1} r_{s}^{(m)}$.
Thus, in Theorems 1 and 2 we have derived closed form expressions for the entries of the Moore-Penrose inverse of upper bidiagonal matrix A from (1). In the next section we discuss an issue of practical computation of the matrix A^{+}.

A Procedure to Compute the Moore-Penrose Inverse. In the paper [2] we have developed a computational procedure of finding the first diagonal block Z_{1} in the block representation (3) of the matrix A^{+}(see Block Z_{1}, Procedure Z1). Further, in the paper [3] we have developed numerical algorithms to compute model matrices Z and H (see (10),(11) in [3]). Taking advantage of these results, below we give the following computational procedure.

Procedure 2d/pinv $\left(A, n \Rightarrow A^{+}\right)$
Input: an upper bidiagonal matrix A of the form (1).

1. A partition (2) of the matrix A into blocks according to the rule specified in [2](Introduction); identification of the blocks $A_{k}(1 \leq k \leq m), B_{k}(1 \leq k \leq$ $m-1)$ and determination of the parameters $n_{k}, 1 \leq k \leq m$, which define the block sizes. In each block A_{k} its own internal numbering of the entries is given (see (8),(9)). The quantities $\Delta_{k}, 1 \leq k \leq m-1$, are introduced (see (11)).
2. The block Z_{1} in the block representation (3) of the matrix A^{+}is computed. For that the procedure $\mathbf{Z 1}\left(A_{1}, n_{1} \Rightarrow Z_{1}\right)$ from [2] is used. The procedure requires $n_{1}^{2}+O\left(n_{1}\right)$ arithmetical operations.
If $m=1$, then the computations are completed and $A^{+}=Z_{1}$.
If $m \geq 2$, then proceed to successive computation of the blocks Z_{k} and H_{k}, for $k=2,3, \ldots, m$.
3. If A_{k} is a block of type 1 , the blocks Z_{k} and H_{k} are computed using the algorithm $\mathbf{Z , H} /$ caseB $\left(A_{k}, \Delta_{k-1}, n_{k}, n_{k-1} \Rightarrow Z_{k}, H_{k}\right)$ given in [3]. The algorithm requires $(1 / 2) n_{k}^{2}+O\left(n_{k}\right)$ arithmetical operations.
4. If A_{k} is a block of type 2 , simple expressions for the entries of the blocks Z_{k} and H_{k} are obtained in Lemmas 5 and 6 of [3]:
if $n_{k}=1$, then

$$
Z_{k}=[0]_{1 \times 1}, \quad H_{k}=\left[0 \ldots 0 \frac{1}{\Delta_{k-1}}\right]_{1 \times n_{k-1}}
$$

if $n_{k} \geq 2$, then

$$
Z_{k}=\left[\begin{array}{ccccc}
0 & & & & \\
b_{1}^{(k)^{-1}} & 0 & & 0 & \\
& b_{2}^{(k)^{-1}} & 0 & & \\
& 0 & \ddots & \ddots & \\
& & & b_{n_{k}-1}^{(k)^{-1}} & 0
\end{array}\right], \quad H_{k}=\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & \frac{1}{\Delta_{k-1}} \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0
\end{array}\right]
$$

It requires no more than n_{k} arithmetical operations.
5. If A_{m} is a block of type 3 , the blocks Z_{m} and H_{m} are computed using the algorithm $\mathbf{Z}, \mathbf{H} /$ caseA $\left(A_{m}, \Delta_{m-1}, n_{m}, n_{m-1} \Rightarrow Z_{m}, H_{m}\right)$ given in [3]. The algorithm requires $n_{m}^{2}+O\left(n_{m}\right)$ arithmetical operations.
Output: matrix A^{+}.
End procedure

Direct calculations show that for $m \geq 2$ the described computational procedure requires no more than

$$
n_{1}^{2}+\frac{1}{2} \sum_{k=2}^{m-1} n_{k}^{2}+n_{m}^{2}+O(n)
$$

arithmetical operations (recall that $n_{1}+n_{2}+\cdots+n_{m}=n$). If $m=1$, this number does not exceed $n_{1}^{2}+O\left(n_{1}\right)$.

Thus we can formulate the following statement.
Proposition. Let A be a singular upper bidiagonal matrix of the form (1) with non-zero over-diagonal entries $b_{1}, b_{2}, \ldots, b_{n-1}$. Then the Moore-Penrose inverse A^{+}of this matrix can be obtained using the computational procedure $\mathbf{2 d} / \mathbf{p i n v}$, which requires no more than $n_{1}^{2}+O\left(n_{1}\right)$ (if $m=1$) or $n_{1}^{2}+\frac{1}{2} \sum_{k=2}^{m-1} n_{k}^{2}+n_{m}^{2}+O(n)$ (if $m \geq 2$) arithmetical operations.

As a clarification, we note the following important features of the procedure. Proceeding from the structure of the blocks in the block representation (3) of the matrix A^{+}(namely, the presence of zeros located at predetermined places) and estimation of the number of arithmetical operations required to compute each block, we can assert that for computing one non-zero entry of the matrix A^{+}asymptotically is expended one arithmetical operation. Thereby the proposed method can be considered as an optimal.

Concluding Remarks. As a result of the study carried out we have obtained a solution to the problem of the Moore-Penrose inverstion of singular upper bidiagonal matrices. We have derived a closed form expressions for the entries of pseudoinverse matrix and developed an optimal numerical algorithm for their computation.

Received 15.04.2016

REFERENCES

1. Hakopian Yu.R., Aleksanyan S.S. Moore-Penrose Inverse of Bidiagonal Matrices. I. // Proceedings of the Yerevan State University. Physical and Mathematical Sciences, 2015, № 2, p. 11-20.
2. Hakopian Yu.R., Aleksanyan S.S. Moore-Penrose Inverse of Bidiagonal Matrices. II. // Proceedings of the Yerevan State University. Physical and Mathematical Sciences, 2015, № 3, p. 8-16.
3. Hakopian Yu.R., Aleksanyan S.S. Moore-Penrose Inverse of Bidiagonal Matrices. III. // Proceedings of the Yerevan State University. Physical and Mathematical Sciences, 2016, № 1, p. 12-21.

[^0]: * E-mail: yuri.hakopian@ysu.am

